Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach
نویسندگان
چکیده
This paper presents an artificial neural network model that is able to predict ozone concentrations as a function of meteorological conditions and precursor concentrations. The network was trained using data collected during a period of 60 days near an industrial area in Kuwait. A mobile monitoring station was used for data collection. The data were collected at the same site as the ozone measurements. The data fed to the neural network were divided into two sets: a training set and a testing set. Various architectures were tried during the training process. A network of one hidden layer of 25 neurons was found to give good predictions for both the training and testing data set. In addition, the predictions of the network were compared to measurements taken during other times of the year. The Ž inputs to the neural network were meteorological conditions wind speed and direction, relative humidity, tempera. Ž ture, and solar intensity and the concentration of primary pollutants methane, carbon monoxide, carbon dioxide, . nitrogen oxide, nitrogen dioxide, sulfur dioxide, non-methane hydrocarbons, and dust . A backpropagation algorithm with momentum was used to prepare the neural network. A partitioning method of the connection weights of the network was used to study the relative % contribution of each of the input variables. It was found that the precursors carbon monoxide, carbon dioxide, nitrogen oxide, nitrogen dioxide, and sulfur dioxide had the most effect on the predicted ozone concentration. In addition, temperature played an important role. The performance of the neural network model was compared against linear and non-linear regression models that were prepared based on the present collected data. It was found that the neural network model consistently gives superior predictions. Based on the results of this study, artificial neural network modeling appears to be a promising technique for the prediction of pollutant concentrations. Q 2001 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کاملShort-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کاملForecasting Ozone Density in Tehran Air Using a Smart Data-Driven Approach
Introduction: As a metropolitan area in Iran, Tehran is exposed to damage from air pollution due to its large population and pollutants from various sources. Accordingly, research on damage induced by air pollution in this city seems necessary. The main purpose of this study was to forecast ozone in the city of Tehran. Considering the hazards of ozone (O3) gas on human health and the environmen...
متن کاملCombining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کامل